
Reprinted from the

Proceedings of the
Linux Symposium

Volume One

July 21th–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



Cooperative Linux

Dan Aloni
da-x@colinux.org

Abstract

In this paper I’ll describe Cooperative Linux, a
port of the Linux kernel that allows it to run as
an unprivileged lightweight virtual machine in
kernel mode, on top of another OS kernel. It al-
lows Linux to run under any operating system
that supports loading drivers, such as Windows
or Linux, after minimal porting efforts. The pa-
per includes the present and future implemen-
tation details, its applications, and its compar-
ison with other Linux virtualization methods.
Among the technical details I’ll present the
CPU-complete context switch code, hardware
interrupt forwarding, the interface between the
host OS and Linux, and the management of the
VM’s pseudo physical RAM.

1 Introduction

Cooperative Linux utilizes the rather under-
used concept of a Cooperative Virtual Machine
(CVM), in contrast to traditional VMs that
are unprivileged and being under the complete
control of the host machine.

The termCooperative is used to describe two
entities working in parallel, e.g. coroutines [2].
In that sense the most plain description of Co-
operative Linux is turning two operating sys-
tem kernels into two big coroutines. In that
mode, each kernel has its own complete CPU
context and address space, and each kernel de-
cides when to give control back to its partner.

However, only one of the two kernels has con-

trol on the physical hardware, where the other
is provided only with virtual hardware abstrac-
tion. From this point on in the paper I’ll refer
to these two kernels as the host operating sys-
tem, and the guest Linux VM respectively. The
host can be every OS kernel that exports basic
primitives that provide the Cooperative Linux
portable driver to run in CPL0 mode (ring 0)
and allocate memory.

The special CPL0 approach in Cooperative
Linux makes it significantly different than
traditional virtualization solutions such as
VMware, plex86, Virtual PC, and other meth-
ods such as Xen. All of these approaches work
by running the guest OS in a less privileged
mode than of the host kernel. This approach
allowed for the extensive simplification of Co-
operative Linux’s design and its short early-
beta development cycle which lasted only one
month, starting from scratch by modifying the
vanilla Linux 2.4.23-pre9 release until reach-
ing to the point where KDE could run.

The only downsides to the CPL0 approach is
stability and security. If it’s unstable, it has the
potential to crash the system. However, mea-
sures can be taken, such as cleanly shutting it
down on the first internal Oops or panic. An-
other disadvantage is security. Acquiring root
user access on a Cooperative Linux machine
can potentially lead to root on the host ma-
chine if the attacker loads specially crafted ker-
nel module or uses some very elaborated ex-
ploit in case which the Cooperative Linux ker-
nel was compiled without module support.



24 • Linux Symposium 2004 • Volume One

Most of the changes in the Cooperative Linux
patch are on the i386 tree—the only supported
architecture for Cooperative at the time of this
writing. The other changes are mostly addi-
tions of virtual drivers: cobd (block device),
conet (network), and cocon (console). Most of
the changes in the i386 tree involve the initial-
ization and setup code. It is a goal of the Coop-
erative Linux kernel design to remain as close
as possible to the standalone i386 kernel, so all
changes are localized and minimized as much
as possible.

2 Uses

Cooperative Linux in its current early state
can already provide some of the uses that
User Mode Linux[1] provides, such as vir-
tual hosting, kernel development environment,
research, and testing of new distributions or
buggy software. It also enabled new uses:

• Relatively effortless migration path
from Windows. In the process of switch-
ing to another OS, there is the choice be-
tween installing another computer, dual-
booting, or using a virtualization soft-
ware. The first option costs money, the
second is tiresome in terms of operation,
but the third can be the most quick and
easy method—especially if it’s free. This
is where Cooperative Linux comes in. It
is already used in workplaces to convert
Windows users to Linux.

• Adding Windows machines to Linux
clusters. The Cooperative Linux patch
is minimal and can be easily combined
with others such as the MOSIX or Open-
MOSIX patches that add clustering ca-
pabilities to the kernel. This work in
progress allows to add Windows machines
to super-computer clusters, where one
illustration could tell about a secretary

workstation computer that runs Cooper-
ative Linux as a screen saver—when the
secretary goes home at the end of the day
and leaves the computer unattended, the
office’s cluster gets more CPU cycles for
free.

• Running an otherwise-dual-booted
Linux system from the other OS. The
Windows port of Cooperative Linux
allows it to mount real disk partitions
as block devices. Numerous people are
using this in order to access, rescue, or
just run their Linux system from their
ext3 or reiserfs file systems.

• Using Linux as a Windows firewall on
the same machine. As a likely competi-
tor to other out-of-the-box Windows fire-
walls, iptables along with a stripped-down
Cooperative Linux system can potentially
serve as a network firewall.

• Linux kernel development / debugging
/ research and study on another operat-
ing systems.

Digging inside a running Cooperative
Linux kernel, you can hardly tell the
difference between it and a standalone
Linux. All virtual addresses are the
same—Oops reports look familiar and the
architecture dependent code works in the
same manner, excepts some transparent
conversions, which are described in the
next section in this paper.

• Development environment for porting
to and from Linux.

3 Design Overview

In this section I’ll describe the basic meth-
ods behind Cooperative Linux, which include



Linux Symposium 2004 • Volume One • 25

complete context switches, handling of hard-
ware interrupts by forwarding, physical ad-
dress translation and the pseudo physical mem-
ory RAM.

3.1 Minimum Changes

To illustrate the minimal effect of the Cooper-
ative Linux patch on the source tree, here is a
diffstat listing of the patch on Linux 2.4.26 as
of May 10, 2004:

CREDITS | 6
Documentation/devices.txt | 7
Makefile | 8
arch/i386/config.in | 30
arch/i386/kernel/Makefile | 2
arch/i386/kernel/cooperative.c | 181 +++++
arch/i386/kernel/head.S | 4
arch/i386/kernel/i387.c | 8
arch/i386/kernel/i8259.c | 153 ++++
arch/i386/kernel/ioport.c | 10
arch/i386/kernel/process.c | 28
arch/i386/kernel/setup.c | 61 +
arch/i386/kernel/time.c | 104 +++
arch/i386/kernel/traps.c | 9
arch/i386/mm/fault.c | 4
arch/i386/mm/init.c | 37 +
arch/i386/vmlinux.lds | 82 +-
drivers/block/Config.in | 4
drivers/block/Makefile | 1
drivers/block/cobd.c | 334 ++++++++++
drivers/block/ll_rw_blk.c | 2
drivers/char/Makefile | 4
drivers/char/colx_keyb.c | 1221 +++++++++++++*
drivers/char/mem.c | 8
drivers/char/vt.c | 8
drivers/net/Config.in | 4
drivers/net/Makefile | 1
drivers/net/conet.c | 205 ++++++
drivers/video/Makefile | 4
drivers/video/cocon.c | 484 +++++++++++++++
include/asm-i386/cooperative.h | 175 +++++
include/asm-i386/dma.h | 4
include/asm-i386/io.h | 27
include/asm-i386/irq.h | 6
include/asm-i386/mc146818rtc.h | 7
include/asm-i386/page.h | 30
include/asm-i386/pgalloc.h | 7
include/asm-i386/pgtable-2level.h | 8
include/asm-i386/pgtable.h | 7
include/asm-i386/processor.h | 12
include/asm-i386/system.h | 8
include/linux/console.h | 1
include/linux/cooperative.h | 317 +++++++++
include/linux/major.h | 1
init/do_mounts.c | 3
init/main.c | 9
kernel/Makefile | 2
kernel/cooperative.c | 254 +++++++
kernel/panic.c | 4
kernel/printk.c | 6
50 files changed, 3828 insertions(+), 74 deletions(-)

3.2 Device Driver

The device driver port of Cooperative Linux
is used for accessing kernel mode and using
the kernel primitives that are exported by the

host OS kernel. Most of the driver is OS-
independent code that interfaces with the OS
dependent primitives that include page alloca-
tions, debug printing, and interfacing with user
space.

When a Cooperative Linux VM is created, the
driver loads a kernel image from a vmlinux
file that was compiled from the patched kernel
with CONFIG_COOPERATIVE. The vmlinux
file doesn’t need any cross platform tools in or-
der to be generated, and the same vmlinux file
can be used to run a Cooperative Linux VM on
several OSes of the same architecture.

The VM is associated with a per-process
resource—a file descriptor in Linux, or a de-
vice handle in Windows. The purpose of this
association makes sense: if the process run-
ning the VM ends abnormally in any way, all
resources are cleaned up automatically from a
callback when the system frees the per-process
resource.

3.3 Pseudo Physical RAM

In Cooperative Linux, we had to work around
the Linux MM design assumption that the en-
tire physical RAM is bestowed upon the ker-
nel on startup, and instead, only give Cooper-
ative Linux a fixed set of physical pages, and
then only do the translations needed for it to
work transparently in that set. All the memory
which Cooperative Linux considers as physi-
cal is in that allocated set, which we call the
Pseudo Physical RAM.

The memory is allocated in the host OS
using the appropriate kernel function—
alloc_pages() in Linux and
MmAllocatePagesForMdl() in
Windows—so it is not mapped in any ad-
dress space on the host for not wasting PTEs.
The allocated pages are always resident and
not freed until the VM is downed. Page tables



26 • Linux Symposium 2004 • Volume One

--- linux/include/asm-i386/pgtable-2level.h 2004-04-20 08:04:01.000000000 +0300
+++ linux/include/asm-i386/pgtable-2level.h 2004-05-09 16:54:09.000000000 +0300
@@ -58,8 +58,14 @@

}
#define ptep_get_and_clear(xp) __pte(xchg(&(xp)->pte_low, 0))
#define pte_same(a, b) ((a).pte_low == (b).pte_low)

-#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))
#define pte_none(x) (!(x).pte_low)

+
+#ifndef CONFIG_COOPERATIVE
+#define pte_page(x) (mem_map+((unsigned long)(((x).pte_low >> PAGE_SHIFT))))

#define __mk_pte(page_nr,pgprot) __pte(((page_nr) << PAGE_SHIFT) | pgprot_val(pgprot))
+#else
+#define pte_page(x) CO_VA_PAGE((x).pte_low)
+#define __mk_pte(page_nr,pgprot) __pte((CO_PA(page_nr) & PAGE_MASK) | pgprot_val(pgprot))
+#endif

#endif /* _I386_PGTABLE_2LEVEL_H */

Table 1: Example of MM architecture dependent changes

are created for mapping the allocated pages
in the VM’s kernel virtual address space. The
VM’s address space resembles the address
space of a regular kernel—the normal RAM
zone is mapped contiguously at 0xc0000000.

The VM address space also has its own
special fixmaps—the page tables themselves
are mapped at 0xfef00000 in order to pro-
vide an O(1) ability for translating PPRAM
(Psuedo-Physical RAM) addresses to physical
addresses when creating PTEs for user space
and vmalloc() space. On the other way
around, a special physical-to-PPRAM map is
allocated and mapped at 0xff000000, to speed
up handling of events such as pages faults
which require translation of physical addresses
to PPRAM address. This bi-directional mem-
ory address mapping allows for a negligible
overhead in page faults and user space map-
ping operations.

Very few changes in the i386 MMU macros
were needed to facilitate the PPRAM. An ex-
ample is shown in Table 1. Around an #ifdef
of CONFIG_COOPERATIVEthe__mk_pte()
low level MM macro translates a PPRAM
struct page to a PTE that maps the real phys-
ical page. Respectively,pte_page() takes
a PTE that was generated by__mk_pte()

and returns the corresponding struct page for
it. Other macros such aspmd_page() and
load_cr3() were also changed.

3.4 Context Switching

The Cooperative Linux VM uses only one host
OS process in order to provide a context for it-
self and its processes. That one process, named
colinux-daemon, can be called a Super Process
since it frequently calls the kernel driver to per-
form a context switch from the host kernel to
the guest Linux kernel and back. With the fre-
quent (HZ times a second) host kernel entries,
it is able able to completely control the CPU
and MMU without affecting anything else in
the host OS kernel.

On the Intel 386 architecture, a complete con-
text switch requires that the top page direc-
tory table pointer register—CR3—is changed.
However, it is not possible to easily change
both the instruction pointer (EIP) and CR3 in
one instruction, so it implies that the code that
changes CR3 must be mapped in both contexts
for the change to be possible. It’s problematic
to map that code at the same virtual address
in both contexts due to design limitations—the
two contexts can divide the kernel and user ad-



Linux Symposium 2004 • Volume One • 27

dress space differently, such that one virtual ad-
dress can contain a kernel mapped page in one
OS and a user mapped page in another.

In Cooperative Linux the problem was solved
by using an intermediate address space during
the switch (referred to as the ‘passage page,’
see Figure 1). The intermediate address space
is defined by a specially created page tables in
both the guest and host contexts and maps the
same code that is used for the switch (passage
code) at both of the virtual addresses that are
involved. When a switch occurs, first CR3 is
changed to point to the intermediate address
space. Then, EIP is relocated to the other map-
ping of the passage code using a jump. Finally,
CR3 is changed to point to the top page table
directory of the other OS.

The single MMU page that contains the pas-
sage page code, also contains the saved state of
one OS while the other is executing. Upon the
beginning of a switch, interrupts are turned off,
and a current state is saved to the passage page
by the passage page code. The state includes
all the general purpose registers, the segment
registers, the interrupt descriptor table register
(IDTR), the global descriptor table (GDTR),
the local descriptor register (LTR), the task reg-
ister (TR), and the state of the FPU / MMX
/ SSE registers. In the middle of the passage
page code, it restores the state of the other OS
and interrupts are turned back on. This process
is akin to a “normal” process to process context
switch.

Since control is returned to the host OS on ev-
ery hardware interrupt (described in the follow-
ing section), it is the responsibility of the host
OS scheduler to give time slices to the Cooper-
ative Linux VM just as if it was a regular pro-
cess.

0xFFFFFFFF

Host OSIntermediateGuest Linux

0x80000000

Figure 1: Address space transition during an
OS cooperative kernel switch, using an inter-
mapped page

3.5 Interrupt Handling and Forwarding

Since a complete MMU context switch also in-
volves the IDTR, Cooperative Linux must set
an interrupt vector table in order to handle the
hardware interrupts that occur in the system
during its running state. However, Cooperative
Linux only forwards the invocations of inter-
rupts to the host OS, because the latter needs
to know about these interrupts in order to keep
functioning and support the colinux-daemon
process itself, regardless to the fact that exter-
nal hardware interrupts are meaningless to the
Cooperative Linux virtual machine.

The interrupt vectors for the internal processor
exceptions (0x0–0x1f) and the system call vec-
tor (0x80) are kept like they are so that Coop-
erative Linux handles its own page faults and
other exceptions, but the other interrupt vectors
point to special proxy ISRs (interrupt service
routines). When such an ISR is invoked during
the Cooperative Linux context by an external
hardware interrupt, a context switch is made to
the host OS using the passage code. On the



28 • Linux Symposium 2004 • Volume One

other side, the address of the relevant ISR of
the host OS is determined by looking at its IDT.
An interrupt call stack is forged and a jump oc-
curs to that address. Between the invocation of
the ISR in the Linux side and the handling of
the interrupt in the host side, the interrupt flag
is disabled.

The operation adds a tiny latency to interrupt
handling in the host OS, but it is quite ne-
glectable. Considering that this interrupt for-
warding technique also involves the hardware
timer interrupt, the host OS cannot detect that
its CR3 was hijacked for a moment and there-
fore no exceptions in the host side would occur
as a result of the context switch.

To provide interrupts for the virtual device
drivers of the guest Linux, the changes in the
arch code include a virtual interrupt controller
which receives messages from the host OS
on the occasion of a switch and invokesdo_
IRQ() with a forged struct pt_args .
The interrupt numbers are virtual and allocated
on a per-device basis.

4 Benchmarks And Performance

4.1 Dbench results

This section shows a comparison between User
Mode Linux and Cooperative Linux. The ma-
chine which the following results were gener-
ated on is a 2.8GHz Pentium 4 with HT en-
abled, 512GB RAM, and a 120GB SATA Max-
tor hard-drive that hosts ext3 partitions. The
comparison was performed using the dbench
1.3-2 package of Debian on all setups.

The host machine runs the Linux 2.6.6 kernel
patched with SKAS support. The UML kernel
is Linux 2.6.4 that runs with 32MB of RAM,
and is configured to use SKAS mode. The Co-
operative Linux kernel is a Linux 2.4.26 kernel
and it is configured to run with 32MB of RAM,

same as the UML system. The root file-system
of both UML and Cooperative Linux machines
is the same host Linux file that contains an ext3
image of a 0.5GB minimized Debian system.

The commands ‘dbench 1’, ‘dbench 3’, and
‘dbench 10’ were run in 3 consecutive runs for
each command, on the host Linux, on UML,
and on Cooperative Linux setups. The results
are shown in Table 2, Table 3, and Table 4.

System Throughput Netbench
43.813 54.766

Host 50.117 62.647
44.128 55.160
10.418 13.022

UML 9.408 11.760
9.309 11.636

10.418 13.023
coLinux 12.574 15.718

12.075 15.094

Table 2: output of dbench 10 (units are in
MB/sec)

System Throughput Netbench
43.287 54.109

Host 41.383 51.729
59.965 74.956
11.857 14.821

UML 15.143 18.929
14.602 18.252
24.095 30.119

coLinux 32.527 40.659
36.423 45.528

Table 3: output of dbench 3 (units are in
MB/sec)

4.2 Understanding the results

From the results in these runs, ‘dbench 10’,
‘dbench 3’, and ‘dbench 1’ show 20%, 123%,
and 303% increase respectively, compared to
UML. These numbers relate to the number



Linux Symposium 2004 • Volume One • 29

System Throughput Netbench
158.205 197.756

Host 182.191 227.739
179.047 223.809
15.351 19.189

UML 16.691 20.864
16.180 20.226
45.592 56.990

coLinux 72.452 90.565
106.952 133.691

Table 4: output of dbench 1 (units are in
MB/sec)

of dbench threads, which is a result of the
synchronous implementation of cobd1. Yet,
neglecting the versions of the kernels com-
pared, Cooperative Linux achieves much better
probably because of low overhead with regard
to context switching and page faulting in the
guest Linux VM.

The current implementation of the cobd driver
is synchronous file reading and writing directly
from the kernel of the host Linux—No user
space of the host Linux is involved, therefore
less context switching and copying. About
copying, the specific implementation of cobd
in the host Linux side benefits from the fact
that filp->f_op->read() is called di-
rectly on the cobd driver’s request buffer after
mapping it usingkmap() . Reimplementing
this driver as asynchronous on both the host
and guest—can improve performance.

Unlike UML, Cooperative Linux can bene-
fit in the terms of performance from the im-
plementation of kernel-to-kernel driver bridges
such as cobd. For example, currently virtual
Ethernet in Cooperative Linux is done simi-
lar to UML—i.e., using user space daemons
with tuntap on the host. If instead we cre-
ate a kernel-to-kernel implementation with no
user space daemons in between, Cooperative

1ubd UML equivalent

Linux has the potential to achieve much better
in benchmarking.

5 Planned Features

Since Cooperative Linux is a new project
(2004–), most of its features are still waiting
to be implemented.

5.1 Suspension

Software-suspending Linux is a challenge on
standalone Linux systems, considering the en-
tire state of the hardware needs to be saved and
restored, along with the space that needs to be
found for storing the suspended image. On
User Mode Linux suspending [3] is easier—
only the state of a few processes needs saving,
and no hardware is involved.

However, in Cooperative Linux, it will be even
easier to implement suspension, because it will
involve its internal state almost entirely. The
procedure will involve serializing the pseudo
physical RAM by enumerating all the page ta-
ble entries that are used in Cooperative Linux,
either by itself (for user space and vmalloc
page tables) or for itself (the page tables of
the pseudo physical RAM), and change them
to contain the pseudo value instead of the real
value.

The purpose of this suspension procedure is to
allow no notion of the real physical memory
to be contained in any of the pages allocated
for the Cooperative Linux VM, since Coopera-
tive Linux will be given a different set of pages
when it will resume at a later time. At the sus-
pended state, the pages can be saved to a file
and the VM could be resumed later. Resum-
ing will involve loading that file, allocating the
memory, and fix-enumerate all the page tables
again so that the values in the page table entries
point to the newly allocated memory.



30 • Linux Symposium 2004 • Volume One

Another implementation strategy will be to just
dump everything on suspension as it is, but
on resume—enumerate all the page table en-
tries and adjust between the values of the old
RPPFNs2 and new RPPFNs.

Note that a suspended image could be created
under one host OS and be resumed in another
host OS of the same architecture. One could
carry a suspended Linux on a USB memory de-
vice and resume/suspend it on almost any com-
puter.

5.2 User Mode Linux[1] inside Cooperative
Linux

The possibility of running UML inside Coop-
erative Linux is not far from being immediately
possible. It will allow to bring UML with all its
glory to operating systems that cannot support
it otherwise because of their user space APIs.
Combining UML and Cooperative Linux can-
cels the security downside that running Coop-
erative Linux could incur.

5.3 Live Cooperative Distributions

Live-CD distributions like KNOPPIX can be
used to boot on top of another operating system
and not only as standalone, reaching a larger
sector of computer users considering the host
operating system to be Windows NT/2000/XP.

5.4 Integration with ReactOS

ReactOS, the free Windows NT clone, will be
incorporating Cooperative Linux as a POSIX
subsystem.

5.5 Miscellaneous

• Virtual frame buffer support.

2real physical page frame numbers

• Incorporating features from User Mode
Linux, e.g. humfs3.

• Support for more host operating systems
such as FreeBSD.

6 Conclusions

We have discussed how Cooperative Linux
works and its benefits—apart from being a
BSKH4, Cooperative Linux has the potential
to become an alternative to User Mode Linux
that enhances on portability and performance,
rather than on security.

Moreover, the implications that Cooperative
Linux has on what is the media defines as
‘Linux on the Desktop’—are massive, as the
world’s most dominant albeit proprietary desk-
top OS supports running Linux distributions
for free, as another software, with the aimed-
for possibility that the Linux newbie would
switch to the standalone Linux. As user-
friendliness of the Windows port will improve,
the exposure that Linux gets by the average
computer user can increase tremendously.

7 Thanks

Muli Ben Yehuda, IBM

Jun Okajima, Digital Infra

Kuniyasu Suzaki, AIST

References

[1] Jeff Dike. User Mode Linux.http:
//user-mode-linux.sf.net .

3A recent addition to UML that provides an host FS
implementation that uses files in order to store its VFS
metadata

4Big Scary Kernel Hack



Linux Symposium 2004 • Volume One • 31

[2] Donald E. Knuth.The Art of Computer
Programming, volume 1.
Addison-Wesley, Reading, Massachusetts,
1997. Describes coroutines in their pure
sense.

[3] Richard Potter. Scrapbook for User Mode
Linux. http:
//sbuml.sourceforge.net/ .



32 • Linux Symposium 2004 • Volume One


